The Proliferation-Quiescence Decision Is Controlled by a Bifurcation in CDK2 Activity at Mitotic Exit
نویسندگان
چکیده
Tissue homeostasis in metazoans is regulated by transitions of cells between quiescence and proliferation. The hallmark of proliferating populations is progression through the cell cycle, which is driven by cyclin-dependent kinase (CDK) activity. Here, we introduce a live-cell sensor for CDK2 activity and unexpectedly found that proliferating cells bifurcate into two populations as they exit mitosis. Many cells immediately commit to the next cell cycle by building up CDK2 activity from an intermediate level, while other cells lack CDK2 activity and enter a transient state of quiescence. This bifurcation is directly controlled by the CDK inhibitor p21 and is regulated by mitogens during a restriction window at the end of the previous cell cycle. Thus, cells decide at the end of mitosis to either start the next cell cycle by immediately building up CDK2 activity or to enter a transient G0-like state by suppressing CDK2 activity.
منابع مشابه
Dev120824 3033..3045
Protein phosphatase type 2A complex (PP2A) has been known as a tumor suppressor for over two decades, but it remains unclear exactly how it suppresses tumor growth. Here, we provide data indicating a novel role for PP2A in promoting the transition to quiescence upon terminal differentiation in vivo. Using Drosophila eyes and wings as a model, we find that compromising PP2A activity during the f...
متن کاملFrom quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle
We recently proposed a detailed model describing the dynamics of the network of cyclin-dependent kinases (Cdks) driving the mammalian cell cycle (Gérard and Goldbeter, 2009). The model contains four modules, each centered around one cyclin/Cdk complex. Cyclin D/Cdk4-6 and cyclin E/Cdk2 promote progression in G1 and elicit the G1/S transition, respectively; cyclin A/Cdk2 ensures progression in S...
متن کاملA map of protein dynamics during cell-cycle progression and cell-cycle exit
The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the tempor...
متن کاملProtein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila.
Protein phosphatase type 2A complex (PP2A) has been known as a tumor suppressor for over two decades, but it remains unclear exactly how it suppresses tumor growth. Here, we provide data indicating a novel role for PP2A in promoting the transition to quiescence upon terminal differentiation in vivo. Using Drosophila eyes and wings as a model, we find that compromising PP2A activity during the f...
متن کاملRole for cyclin-dependent kinase 2 in mitosis exit
Mitosis requires cyclin-dependent kinase (cdk) 1-cyclin B activity [1]. Exit from mitosis depends on the inactivation of the complex by the degradation of cyclin B [2]. Cdk2 is also active during mitosis [3, 4]. In Xenopus egg extracts, cdk2 is primarily in complex with cyclin E, which is stable [5]. At the end of mitosis, downregulation of cdk2-cyclin E activity is accompanied by inhibitory ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 155 شماره
صفحات -
تاریخ انتشار 2013